Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(9): e19167, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662824

RESUMEN

The frequent use of an industrial dye such as malachite green (MG) has caused major water body deterioration and is one of the most pressing global challenges, demanding effective treatment techniques. To solve these issues, a simplistic method was developed to synthesize zinc-tungstate (ZnWO4) nanoparticles and also dope the surface matrix of the ZnWO4 nanoparticles using nonmetals of boron (B), carbon (C), and nitrogen (N) at different ratios for enhanced MG removal from wastewater. The prepared nanomaterials were characterized by different methods for crystal structure composition, surface properties, surface morphology, microstructures, functional groups, and elemental oxidation states. The BET analysis revealed a mesoporous structure with surface areas of 30.740 m2/g for ZnWO4, 38.513 m2/g for ZnWO4@BCN, 37.368 m2/g for ZnWO4@BCN/B, 39.325 m2/g for ZnWO4@BCN/C, and 45.436 m2/g for ZnWO4@BCN/N nanocomposites. The best removal of MG was accomplished at pH (8), contact period (50 min), nanoadsorbent dose (0.8 g/L), initial MG concentration (20 mg/L), and temperature (303 K). The maximum adsorption capacities of ZnWO4 and ZnWO4@BCN/N towards MG were 218.645 and 251.758 mg/g, respectively. At equilibrium, the Freundlich isotherm and pseudo-second-order kinetic models were the best fits for the experimental data of MG adsorption on both nanoadsorbents. After eight cycles of adsorption and desorption, both ZnWO4 and ZnWO4@BCN/N were found to be good at removing MG, with efficiencies of 71.00 and 74.20%, respectively. Thermodynamic investigations further validated the spontaneity and endothermic nature of the adsorption process. All study findings confirm the nanoadsorbents exceptional capability and economic feasibility for removing MG dye.

2.
Endocrinol Diabetes Metab ; 6(3): e423, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37038362

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a metabolic disorder that affects the body's ability to produce or use insulin. This study evaluated the hypoglycaemic activity of biosynthesized copper oxide nanoparticles (CuO-NPs) in alloxan-induced diabetic Wister rats. METHODS: CuO-NPs were synthesized via the green route and characterized using different analytical tools. Diabetes was induced intraperitoneally using 90 mg/kg body weight of alloxan monohydrate in albino rats. Thirty (30) rats were randomly divided into 5 groups of 6 rats each and orally treated for 21 days. Groups I and II were treated with 300 mg/kg bwt Cereus hildmannianus extract and CuO-NPs, respectively. Groups III and IV received 5 mg/kg bwt of Glibenclamide and 2 mL of normal saline, respectively, while Group V was left untreated as the diabetic control. Blood glucose (BG) levels and body weight changes were monitored at 3- and 7-day intervals, respectively, throughout 21-day treatment period. Lipid profiles, enzyme assays and histopathological studies of the liver were also carried out. RESULTS: Spheroidal tenorite phase of CuO-NPs with a crystallite size of 62.57 nm, surface area (20.64 m2 /g) and a UV-maximum absorption at 214.27 nm was formed. The diabetic rats treated with 300 mg/kg bwt CuO-NPs had the highest BG lowering ability (from 482.75 ± 27.70 to 124.50 ± 2.50 mg/dL). A significant difference (p < 0.05) in weight gain and serum enzymes was also observed in the CuO-NPs treated group compared with other groups. The CuO-NPs-treated group had a significant increase (p < 0.05) in HDL-cholesterol and a decrease in total cholesterol, triglycerides, LDL-cholesterol and VLDL-cholesterol compared with other groups. CONCLUSION: The green synthesized CuO-NPs nanoparticles significantly reduced (p < 0.05) blood glucose levels in rats and other associated indices and could serve as drug lead in the treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas , Animales , Ratas , Hipoglucemiantes/efectos adversos , Cobre/efectos adversos , Aloxano/efectos adversos , Glucemia , Extractos Vegetales/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Wistar , HDL-Colesterol , Peso Corporal , Óxidos/efectos adversos
3.
Heliyon ; 9(2): e13095, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36793965

RESUMEN

Herein, magnetite nanoparticles (NPs), zeolite A and magnetite-zeolite A (MAGZA) composite was developed by green methods. The produced nanomaterials were characterized and the effect of process parameters such as flow rate, adsorbent bed height and adsorbate inlet concentration was evaluated for the removal of biological oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) in a column. The characterization results demonstrated the successful synthesis of magnetite NPs, zeolite A and MAGZA composite. The performance of the MAGZA composite in the fixed-bed column was superior to zeolite A and magnetite NPs. The parametric influence indicates that an increase in bed height and a decrease in the flow rate and inlet adsorbate concentration improved the performance of the adsorption column. The adsorption column demonstrated maximum performance at a flow rate (4 mL/min), bed height (5 cm) and inlet adsorbate concentration (10 mg/L). Under these conditions, the highest percent removal of BOD, COD and TOC were 99.96, 99.88 and 99.87%. Thomas and Yoon-Nelson's model suitably fitted the breakthrough curves. After five reusability cycles, the MAGZA composite demonstrated removal percent of BOD (76.5%), COD (55.5%) and TOC (64.2%). The produced MAGZA composite effectively removed BOD, COD and TOC from textile wastewater in a continuous operating mode.

4.
Heliyon ; 8(7): e09964, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35874051

RESUMEN

The monoclinic wolframite-phase structure of ZnWO4 materials has been frequently synthesised, characterised, and applied in optical fibres, environmental decontamination, electrochemistry, photonics, catalysis, and not limited to magnetic applications. However, the problems of crystal growth conditions and mechanisms, growth, the crystal quality, stability, and the role of synthesis parameters of ZnWO4 nanoparticles remain a challenge limiting its commercial applications. This review presents recent advances of ZnWO4 as an advanced multi-functional material for Industrial wastewater treatment. The review also examines the influence of the synthesis parameters on the properties of ZnWO4 and provides insight into new perspectives on ZnWO4-based photocatalyst. Many researches have shown significant improvement in the efficiency of ZnWO4 by mixing with polymers and doping with metals, nonmetals, and other nanoparticles. The review also provides information on the mechanism of doping ZnWO4 with metals, non-metals, metalloids, metals oxides, and polymers based on different synthesis methods for bandgap reduction and extension of its photocatalytic activity to the visible region. The doped ZnWO4 photocatalyst was a more effective and environmentally friendly material for removing organic and inorganic contaminants in industrial wastewater than ordinary ZnWO4 nanocrystalline under suitable growth conditions.

5.
J Hazard Mater ; 423(Pt B): 126993, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34530269

RESUMEN

Nickel nanoparticles (NiNPs) supported on activated multi-walled carbon nanotubes (MWCNTs) were used as an adsorbent applied towards Pb(II), As(V) and Cd(II) remediation from industrial wastewater. The result revealed the hydrophilic surface of MWCNTs-KOH was enhanced with the incorporation of NiNPs enabling higher surface area, functional groups and pore distribution. Comparatively, the removal of Pb(II), As(V) and Cd(II) on the various adsorbents was reported as NiNPs (58.6 ± 4.1, 46.8 ± 3.7 and 40.5 ± 2.5%), MWCNTs-KOH (68.4 ± 5.0, 65.5 ± 4.2 and 50.7 ± 3.4%) and MWCNTs-KOH@NiNPs (91.2 ± 8.7, 88.5 ± 6.5 and 80.6 ± 5.8%). Using MWCNTs-KOH@NiNPs, the maximum adsorption capacities of 481.0, 440.9 and 415.8 mg/g were obtained for Pb(II), As(V) and Cd(II), respectively. The experimental data were best suited to the Langmuir isotherm and pseudo-second order kinetic model. The fitness of experimental data to the kinetic models in a fixed-bed showed better fitness to Thomas model. The mechanism of metal ion adsorption onto MWCNTs-KOH@NiNPs show a proposed electrostatic attraction, surface adsorption, ion exchange, and pore diffusion due to the incorporated NiNPs. The nanocomposite was highly efficient for 8 adsorption cycles. The results of this study indicate that the synthesized nanocomposite is highly active with capacity for extended use in wastewater treatment.


Asunto(s)
Arsénico , Nanopartículas , Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Cadmio , Cinética , Plomo , Níquel , Aguas Residuales , Contaminantes Químicos del Agua/análisis
6.
Sci Rep ; 11(1): 75, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420137

RESUMEN

The efficient removal of toxic metals ions from chemical industry wastewater is considered problematic due to the existence of pollutants as mixtures in the aqueous matrix, thus development of advanced and effective treatment method has been identified as a panacea to the lingering problems of heavy metal pollution. In this study, KIAgNPs decorated MWCNTs nano adsorbent was developed using combination of green chemistry protocol and chemical vapor deposition techniques and subsequently characterized using UV-Vis, HRTEM, HRSEM, XRD, FTIR and XPS. The adsorptive efficiency of MWCNTs-KIAgNPs for the removal of Cr(VI), Ni(II), Fe(II), Cd(II) and physico-chemical parameters like pH, TDS, COD, BOD, nitrates, sulphates, chlorides and phosphates from chemical industrial wastewater was examined in both batch and fixed bed systems. The result exhibited successful deposition of KIAgNPs on the surface of MWCNTs as confirmed by the microstructures, morphology, crystalline nature, functional groups and elemental characteristics of the MWCNTs-KIAgNPs. Optimum batch adsorption parameters include; pH (3 for Cr(VI) and 6 for Ni(II), Fe(II) and Cd(II) ions), contact time (60 min), adsorbent dosage (40 mg) and temperature (318 K). The binding capacities were obtained as follows; Cr6+ (229.540 mg/g), Ni2+ (174.784 mg/g), Fe2+ (149.552) and Cd2+ (121.026 mg/g), respectively. Langmuir isotherm and pseudo-second order kinetic model best described the experimental data in batch adsorption, while the thermodynamic parameters validated the chemisorption and endothermic nature of the adsorption process. In continuous adsorption, the metal ions were effectively removed at low metal influent concentration, low flow rate and high bed depth, whereby the experimental data were designated by Thomas model. The high physico-chemical parameters in the wastewater were successfully treated in both batch and fixed bed systems to fall within WHO permissible concentrations. The adsorption/desorption study illustrated over 80% metal removal by MWCNTs-KIAgNPs even after 8th adsorption cycle. This study demonstrated excellent performance of MWCNTs-KIAgNPs for chemical industry wastewater treatment.

7.
Chemosphere ; 266: 128937, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33280844

RESUMEN

Herein, Taguchi L9 orthogonal array was used for the first time to optimize synthesis of diameter-controlled multi walled carbon nanotubes (MWCNTs). The nanoadsorbents, MWCNTs5-15 nm and MWCNTs16-25 nm were applied for Pb(II) and Ni(II) ion removal from paint, battery and electroplating wastewater. The results indicated successful synthesis of MWCNTs with diameter distribution ranges of 5-15 nm and 16-25 nm. The synthetized smaller diameter MWCNTs5-15 nm revealed higher Brunauer-Emett-Teller (BET) surface area of 1306 ± 5 m2/g compared to larger diameter MWCNTs16-25 nmwith the surface area of 1245 ± 4 m2/g. They demonstrated excellent adsorption of Pb(II) and Ni(II) ions within the permissible concentration proposed by WHO at pH, contact time, adsorbent dosage and temperature of 5, 60 min, 30 mg/L and 50 °C, respectively. Particularly, MWCNTs5-15 nm possessed high adsorption capacity of 215.38 ± 0.03 mg/g for Pb(II) and 230.78 ± 0.01 mg/g for Ni(II). Again, the maximum adsorption capacity of 201.35 ± 0.02 and 206.40 ± 0.02 mg/g was achieved for Pb(II) and Ni(II) using MWCNTs16-25 nm. All in all, the adsorption capacity of the nanoadsorbents at the investigated diameter range showed higher efficiency compared to other materials for heavy metals elimination from chemical industrial wastewater.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Industria Química , Concentración de Iones de Hidrógeno , Cinética , Plomo , Aguas Residuales , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Pollut Res Int ; 26(19): 19942-19967, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31098902

RESUMEN

In this work, Ag2O/B2O3/TiO2 ternary nanocomposite was synthesized by a combination of green and precipitation method involving mixing of different concentrations of silver nitrate, boric acid, and titanium (IV) isopropoxide precursor with Plumeria acuminate leaf extract. The extract was obtained by boiling the mixture of distilled water and the powdered leaves in a beaker for few minutes followed by filtration. The microstructure, morphology, chemical composition, surface area, phase structure, and optical properties of the various prepared nanomaterials were determined by HRTEM, HRSEM, UV-Vis/DRS, BET, XRD, and XPS. The photocatalytic potential of TiO2 nanoparticles and Ag2O/B2O3/TiO2 nanocomposites to degrade local dyeing wastewater under artificial and natural sunlight irradiation was investigated. The extent of degradation of the organic pollutants was measured using chemical oxygen demand (COD) and total organic carbon (TOC) as indicator parameters. The XRD pattern of Ag2O/B2O3/TiO2 nanocomposites revealed that the formation of pure anatase TiO2 phase and the addition of both silver and boron precursors did not influenced the phase structure of the nanocomposites. The oxidation states of +1 and +3 for both Ag and B on the surface of Ag2O/B2O3/TiO2 nanocomposites were confirmed by XPS. Optical characterization of the sample revealed reduction of band gap energy from 2.6 to 2.0 eV for TiO2 and Ag2O/B2O3/TiO2, respectively. The Ag2O/B2O3/TiO2 nanocomposites demonstrated excellent photocatalytic activity under natural sunlight and artificial light than mono and binary oxide systems with TOC and COD degradation efficiencies of 86.11% and 75.69%, respectively. The kinetics of degradation of organic dyes in the wastewater followed the order of Langmuir-Hinshelwood pseudo-first-order > Freundlich > Zero > Parabolic diffusion model. The coupling effect of Ag2O and B2O3 onto TiO2 framework was responsible for the enhanced photochemical stability of the nanocomposites even after five repeated cycles.


Asunto(s)
Nanocompuestos/química , Fotólisis , Luz Solar , Aguas Residuales/química , Contaminación Química del Agua/prevención & control , Colorantes/análisis , Cinética , Contaminantes Químicos del Agua/análisis
9.
Sci Rep ; 9(1): 4475, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872666

RESUMEN

This research investigated the removal of heavy metals (As, Pb, Cr, Cd, Ni, Cu, Fe, and Zn) via batch adsorption process from industrial electroplating wastewater using two different nano-adsorbents; purified carbon nanotubes (P-CNTs) and polyhydroxylbutyrate functionalized carbon nanotubes (PHB-CNTs), both produced through catalytic chemical vapour deposition (CCVD) method. HRSEM, HRTEM, XRD, DLS, BET, FTIR, XPS, TGA, pH drift and Raman spectroscopy were used to characterize the developed nano-adsorbents. In the batch adsorption process, the effects of contact time, dosage, temperature and pH were studied. Both nano-adsorbents gave optimum contact time, equilibrium time, optimum dosage, and pH of 10 minutes, 70 minutes, 20 mg, and 5.63-5.65 respectively. The heavy metals removal efficiencies by the nano-adsorbents followed the order of PHB-CNTs > P-CNTs based on ion exchange and electrostatic forces mechanism. For P-CNTs and PHB-CNTs, the equilibrium sorption isotherm suits temkin model, kinetic data fitted to pseudo-second order based on the linear regression correlation coefficient, and the thermodynamic study established spontaneity and endothermic nature of the adsorption process. The findings in this research conclude that both nano-adsorbents have exceptional capacity to remove heavy metals from the adsorbate, with PHB-CNTs possessing better quality. The treated adsorbate meets the standard for industrial or irrigation re-use.

10.
Environ Sci Pollut Res Int ; 25(8): 7299-7314, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29349742

RESUMEN

Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.


Asunto(s)
Peróxido de Hidrógeno/química , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Hidrodinámica , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...